Girth Welding in the Age of Evolving Steel Manufacturing Processes and under Realistic Field Conditions

Current Practice and Gaps

Yong-Yi Wang

Center for Reliable Energy Systems
5858 Innovation Dr.
Dublin, OH 43016
ywang@cres-Americas.com
614-376-0765

API 1104/5L Joint Task Group
1/22/2019
San Antonio, TX, USA
Overview

- Girth weld incidents and contributors
 - Contributors from technical perspectives
 - Contributors in our systems
- Gaps in our approaches
- Importance of taking holistic approaches to weld integrity rooted in fundamental understandings
Girth Weld Incidents

- Multiple incidents in the last few years
 - Most were in-service failures
 - Some were hydrostatic failures (leaks)

- Pipes
 - ERW pipes (12”, 20” and 24” OD)
 - SAWH (spiral pipes) 30+” OD
 - (One source indicated that there have been failures involving SAWL pipes, but CRES has no direct knowledge of such incidents.)
 - Grades
 - X52, X65 (small to medium diameter ERW)
 - Most were X70 (medium to large diameter, ERW and SAWH)
 - One X70 to X80 (transition weld)

- Welding – all manual
 - SMAW: E6010 root, E8010 fill and cap passes
 - X70/X80: SMAW/E6010 root, FCAW fill and cap passes
Features of Failure Path
Features of Failure Path
Hardness/Strength Distribution: a Good Indicator of Failure Path

- Representative hardness
 - Pipe: 235 Hv
 - Root pass: 165 Hv (70% of pipe)
 - Fill pass: 205 Hv (87% of pipe)
 - HAZ: 185 Hv (79% of pipe)

Pipe 1
YS = 86,000 psi

Pipe 2
YS = 91,500 psi

E8010 hot pass, fill and cap YS ~ 78,000 psi

E6010 root bead
YS ~ 66,000 psi
Failure Path: in Softened HAZ without Weld Strength Undermatching
Contributors to the Incidents

- Weld strength undermatching the actual strength of the pipe
- HAZ softening
- Soft root
- Weld bevel (manual SMAW/FCAW)
- Bending loads
 - normal ground settlement
 - Mismatch between pipe and trench profiles
Non-Contributors to the Incidents

- Weld flaw
 - was a main contributor to a hydrostatic test leak.
 - Was not a factor in other incidents.

- The level of high-low misalignment is low in most cases. When a moderate level of high-low existed, it was well within the recommended limit of API 1104.

- The pipe strength met API 5L requirements.

- The chemical composition of the pipes met API 5L requirements.

- The cross-weld tensile tests met API 1104 requirements, despite welding strength being lower than the strength of the pipe by a wide margin in some cases.

- The toughness of the weld was adequate. The failures were strength-driven, not toughness-driven.

- Pipes and welds (including inspection) were code-compliant.
Factors Contr. to Weld Strength Undermatching

- Manual welding processes and consumables has not changed.
- Pipe strength progressively moved up.
 - Large range permitted in API 5L
 - Test method systematically under-represents actual yield strength.
 - Changes in steel making, test method, and definition of yield strength lead to large variations in reported yield strength of the same joint of pipe.
 - Mills have to increase the averaged strength to meet the minimum strength requirements.
 - Industry response to expanded pipes due to “understrength” pipes
 - PHMSA ADB
 - The negative consequence of higher strength was not well recognized.
Contributor to Pipe Having High Strength for a Grade

- EPRG tests show that flattened specimens could underrepresent the YS of full-size pipe specimens by
 - 12% on average, and
 - 18% at most.

- Observed actual high-end YS
 - X52: low 80s to low 90s ksi
 - X70: mid 80s to low 90s ksi

<table>
<thead>
<tr>
<th>Grade</th>
<th>API 5L PSL 2 YS (ksi)</th>
<th>Possible Actual YS Range after Considering 12% Under-Representation (ksi)</th>
<th>Actual Minimum YS Pipe Mills Would/Could Target Considering 18% Under-Representation (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>X52</td>
<td>52</td>
<td>77</td>
<td>59</td>
</tr>
<tr>
<td>X70</td>
<td>70</td>
<td>90</td>
<td>79</td>
</tr>
</tbody>
</table>
Changes in YS & Strain Hardening over Time

- In this case, newer steel has higher actual yield strength, lower strain hardening.

- The 2010s X52 is more likely to have undermatching weld strength.
- Having strain hardening is important for the tolerance to mechanical damage.
 - Is 6% strain criterion for dent assessment good for linepipes with very low strain hardening and uniform strains less than 6%?
Failure Stress vs. Pipe & Weld Strength

- Failure stress taken from cross-weld tensile tests
- X70 pipes, E6010/E8010 consumables

- Recent review of MTRs of X70 ERW pipes
 - Mean of UTS: 100 ksi
 - Range: 91-108 ksi
- Weld strength is sufficient for some pipes in the distribution, but not so for many more.
Contributors to HAZ Softening - Steel Making Process

- Leaner chemistry: move towards lower carbon content and lower hardenability
- X70
 - Earlier days: C ~0.08%, Pcm: ~0.18-0.20
 - Present days: C: as low as 0.02%, Pcm: as low as 0.12
- Greater reliance on rolling and accelerated cooling to gain strength

- From a paper by Malcolm Gray
Different Responses to Welding Thermal Cycles

- X70 UOE pipe, ~2000

- X70 ERW pipes, ~2013
HAZ Softening – Gaps in Linepipe Spec and WPQ

- HAZ softening is a result of pipe chemistry and girth welding thermal cycles.
- There is no qualification or testing of steel’s susceptibility to HAZ softening in
 - Linepipe spec, and
 - Girth weld procedure qualification

- In actual girth welds
 - Levels of HAZ softening vary greatly.
 - Softening level increases with repair welding
Gaps between Design and Field Conditions

- Our practice - conventional stress-based design
 - Longitudinal stress is limited to 90% SMYS.
 - Combined equivalent stress is limited to 90% SMYS.
 - Implications: pipelines are “only required” to be able to tolerate strains up to 0.2%.

- Field conditions/practice
 - Internal pressure, thus hoop stress, is actively managed.
 - Longitudinal stress/strains in most cases are not actively managed.
 ▶ High strain locations exist more frequently than many expect.
Conditions generating axial strains - most onshore pipelines

- Differential settlement
 - Tie-in at crossings
 - Excavation of pipelines that have been in service for a while
- Pipe ends are forced together at tie-in locations
- The profiles of trench and pipes don’t completely match
- Temperature changes
In girth welding procedure qualifications

- Failure in the weld region is permitted if the failure stress is equal or above the minimum UTS of the pipe.
- For instance, for welds of X70 pipes
 - Pipe yield strength can be as high as 90 ksi.
 - Pipe UTS can be as high as 110 ksi.
 - Welds meet qualification requirements if they breaks at a stress level 82 ksi or higher.

Implications

- Weld strength can be significantly lower than the strength of the pipe, yet pass qualification.
- Welds can reach UTS before pipe reaches yield strength.
- In an event of settlement, strains are concentrated in the welds.
- The tensile strain capacity can be as low as 0.20%-0.25%.
Factors Affecting Weld Performance vs. Qualification Requirements

- **API 1104** focuses on the prevention, detection, and repair of flaws exceeding certain limits.
- **Effective integrity approach**
 - No failure in nearly defect-free welds
 - Remove large flaws
- **Requirements on welds, e.g., flaw acceptance criteria, should be tied to performance requirements**
 - Loading conditions
 - Station welds vs. tie-in welds in hilly areas
 - Guard against overspecifying

<table>
<thead>
<tr>
<th>Factors Affecting Girth Weld Performance</th>
<th>Factors Addressed in API 1104</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe wall thickness</td>
<td>Mostly Yes</td>
</tr>
<tr>
<td>Pipe strain hardening capacity</td>
<td>No</td>
</tr>
<tr>
<td>Weld strength mismatch</td>
<td>YS mismatch: No; UTS mismatch: No</td>
</tr>
<tr>
<td>HAZ strength (Softening)</td>
<td>No</td>
</tr>
<tr>
<td>Weld profile</td>
<td>Cap reinforcement: Mostly No; Misalignment: No; Bevel geometry: Yes</td>
</tr>
<tr>
<td>Weld flaw</td>
<td>Flaw type: Yes; Flaw dimensions: Yes</td>
</tr>
<tr>
<td>Toughness</td>
<td>No</td>
</tr>
<tr>
<td>Applied stress/strain</td>
<td>No</td>
</tr>
</tbody>
</table>

Factors Addressed in API 1104

- **Pipe wall thickness**: Mostly Yes
- **Pipe strain hardening capacity**: No
- **Weld strength mismatch**: YS mismatch: No; UTS mismatch: No
- **HAZ strength (Softening)**: No
- **Weld profile**: Cap reinforcement: Mostly No; Misalignment: No; Bevel geometry: Yes
- **Weld flaw**: Flaw type: Yes; Flaw dimensions: Yes
- **Toughness**: No
- **Applied stress/strain**: No
Systematic Gaps

- Perception about standards
 - Standards committees
 - Standards are minimum requirements.
 - Additional requirements can be added by companies.
 - Purchasing and contract departments
 - Standards are sufficient.
 - May challenge any additional requirements
 - Contractors
 - Standards are the base and “everything”.
 - “If you ask more, you pay.”
- Purchasing department gets API 5L pipes with the lowest cost.
- Welding engineers don’t wish to get “punished” when they have to work with what they got.
 - Welding engineers may not have influence on pipe procurement and contracts.
- Construction crew wants to meet project deadlines.
Long-Term Mitigation Goals

- Having strain-resistant girth welds
 - Girth welds should be able to resist a minimum tensile strain of 0.5% at full pressure conditions
- Why? Managing pipelines to a low applied strain level is very difficult.
 - Construction practice
 - Terrain conditions
 - Changing pipe support conditions
 - Nearby third-party construction
 - Excavation and backfill in the future
 - Climate change, seasonable temperature change
 - Tools are not available to detect low strain events.
- After achieving a minimal level of strain tolerance, limited number of sites facing high strains can be addressed in geohazards management programs.
Concluding Remarks

- Welds have failed without the traditional contributors, such as
 - Flaws
 - Misalignment

- Welds have failed when
 - Applicable standards have been followed.
 - There is no large-scale external loading.
Concluding Remarks

❑ Gaps
 ❖ Design vs. field conditions
 ❖ Linepipe vs. welding
 ❖ Welding procedure qualification vs. field conditions

❑ There are gaps in
 ❖ Technology
 ❖ Transition and connection among multiple technical areas and disciplines
 ❖ Organizations
 ► Industry-wide: codes and standards
 ► Within a company: departments and teams
Concluding Remarks

- Our industry tends to define our practice by grades.
 - Grade could be a very loose indicator of strength.
 - Some fundamental material performance could have a very loose or even no connection with grades.
 - Our focus on grades could also prevent us from seeking fundamental understanding.

- The myth about grade
 - One knows the strength of a pipe by grade. *Maybe*
 - Grade can be used to rank the strength of pipes. *Maybe*
 - If a weld overmatches an X65 pipe in strength, it would overmatch X60 and X52. *Maybe*
 - If a weld is qualified for one grade for weld performance, it's always good for this grade. *Maybe*
Concluding Remarks

- Our industry should take a holistic and coherent approach that examines all factors affecting the eventual performance of pipelines.
 - Steel making / linepipe specifications
 - Welding practice / requirements in welding procedure qualification
 - Field inspection and flaw acceptance criteria
 - Pipeline construction and service environment
 - Anomaly tolerance and assessment
 - ILI and in-ditch inspection
Concluding Remarks

- We could do a lot of busy work if we don’t understand the fundamentals.
- Our standards should move towards specifications based on engineering principles and understanding, augmented by historical experiences. Otherwise,
 - We don’t know when we might “fall off a cliff”.
 - We could be fixing “problems” that do not exist, e.g., removing good welds.
 - We could be over-specifying requirements.
Thank You

- Q&A